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Abstract. The possibilities for the insulator—metal transitions in the spinless Falicov—Kimball
model with a generalized type of hopping are studied using small-cluster exact diagonalization
catculations. It is shown that for small values of the interaction strength U the energy gap A
vanishes discontinuously at some critical value of the f-electron occupation number and thus
in the pressure-induced case the model can describe the insulator-metal transition observed in
some rare-garth compounds.

In our preceding paper [1] we studied valence transitions in the spinless Falicov—Kimball
model with a generalized type of hopping. We found that even for relatively small
values of the interaction strength U the basic structure of the valence transition can be
described very precisely taking into account only the most homogeneous configurations.
For this set of configurations the model undergoes only a few discrete intermediate-valence
transitions and thus in the pressure-induced case when the f-level position is pushed upward
it could describe the discontinuous intermediate-valence transitions observed in some rare-
earth compounds [2]. Unfortunately due to the replacement of the real ground-state
configurations by the most homogeneous configurations we were not able to decide whether
the discontinuous intermediate-valence transitions obtained are insulator-metal transitions
or only insulator—insulator transitions. To resolve this important problem satisfactorily we
have in the present paper extended our early small-cluster exact diagonalization calculations
with a more exhaustive numerical study of the model. We have found that the Falicov-
Kimball model can be used to describe both of the above-mentioned types of transition and
thus it seems to be a convenient model for a description of the valence and insulator—metal
transitions in some rare-earth and transition-metal compounds [2].

The model to be discussed in this paper is identical to the one used in the previous
paper {1] :

H=Y tydtd+ U wdid +E Y w m
if { i

where d,-*' (d;) are the creation (annihilation) operators of the itinerant spinless electrons
in the d-band Wannier state at site i and w; is the occupation number of the localized
electrons taking the value 1 or ( according to whether the site i is occupied or unoccupied
by an { electron.

The first term of (1) is the kinetic energy corresponding to quantum mechanical hopping
of the itinerant d electrons between sites i and j. Usually it is assumed that t;; = —t if i
and j are the nearest neighbours and zero otherwise; however, to study effects of the band
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on the valence and insulator-metal transitions we adopt the following general form of the
matrix elements:

iy = —tg UL gy g < @

which represents a much more realistic type of hopping.
The second term is the on-site Coulomb interaction between the d-band electrons with
density

ng=(1/L)y d'd;

and the localized f electrons with density
np = (/LYY w;

where L is the number of lattice sites. The third term stands for the localized f electrons
whose sharp energy level is Ey.

For a given f-electron configuration w = {w;, wy, ..., wr} defined on the one-dimen-
sional lattice with periodic boundary conditions, the Hamiltonian (1} is the second-quantized
version of the single-particle Hamiltonian A(w) = T + UW, whose matrix elements are
Ry = t;; +Uw;8;;, and thus the investigation of the model (1) is reduced to the investigation
of the spectrum of h for different configurations of f electrons. Since the d electrons do
not interact among themselves, the numerical calculations proceed directly in the following
steps (next we consider just the case where Nr + Ny = L, which is of special interest for
the mixed-valence phenomena): (1) having U, Ef, g and w = {wy, wa, ..., wy} fixed, find
all the eigenvalues Ay of h{w) = T + UW; (2) for a given Ny = 3, w; determine the
ground-state energy

LNy

E(w,U,Efy= Y, e+ EfNy

k=]
of a particular f-electron configuration w by filling in the lowest Ny = L — N one-
electron levels; (3) find w® for which E(w, U, Ey) has a minimum. Now repeating this
procedure for different values of U or E; one can immediately study the dependence of
the f-electron occupation number Ny = 3, w? on U or Ej respectively. It should be noted
that this problem, and particularly the question of whether the Falicov-Kimball model can
or cannot describe the discontinucus transition of the f-electron cccupation number n5 as
a function of the f-level energy Ey, is crucial for an understanding of some anomalous
physical properties of rare-earth compounds. For example, supposing [3] that the external
pressure shifts the energy level Ey, then the valence transitions observed in some rare-
carth compounds (SmBg, SmS, TmTe, etc) could be understandable purely electronically,
if nys(Ey) really has discontinuities.

To show qualitatively the possibilities for the insulator—metal transitions in the spinless
Falicov-Kimball model with a generalized type of hopping let us first examine the ground-
state phase diagram of the model on a finite one-dimensional lattice of 20 sites. The exact
numerical results obtained for a complete set of 22° f-electron configurations are shown in
figure 1 and figure 2 for two different values of g and Ey = 0. It should be noted that we
can restrict our investigation of the possibilities for the insulator-metal transitions to the
case where U < Uy = 4/(1 — g%) since, by a theorem of Gersgorin [4], there is always a
finite gap in the spectrum of 2(w) for U > Uy and Ny + Ny = L.

Figure 1 presents the ground-state phase diagram for 4 = 0.1. Qur exact numerical
results indicate that the phase diagram of the Falicov—Kimball model with a generalized
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Figure 1. The ground-state phase diagram of the spinless Falicov-Kimball model with 2
generalized type of hopping for ¢ = 0.1 and L = 20. In the region denoted hom. the ground
states are the most homogeneous configurations, while in the regions denoted with o the ground
states are mixtures of the empty (ny — 0} or the fully occupied {(ny — 1) configuration and
some configuration w.
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Figure 2. The ground-state phase diagram for ¢ = 0.3 and L = 20, The phase A corresponds
to mixtures of the altemating configurations w, (N¢) with the empty configuration. while in the
phase x (Ny = 2) the ground-state configuration varies gradually from the most homogeneous
to {101000...0}. In the configurations denoted as + the f electrons are distributed similarly to
in the most homogeneous configurations, i.e., the distances between two consecutive f electrons
are either d or & + 1; however, the most homogeneous distribution of distances  and d + 1 is
‘broken here.

type of hopping is separated into several distinct regions. In the first region the most
homogeneous configurations are the ground states. In the second region (U < 1,1y — 0)
the ground states are configurations each consisting of at least L /2 consecutive unoccupied
sites (they can be considered as mixtures of the empty configuration and some configuration
w), and in the third reglon (/' < 1,1y — 1) configurations consisting of at least L/2
consecutive occupied sites minimize the ground-state energy. For exampie, for Ny = 2
the ground state is the configuration 1,0y consisting of 2 occupied sites followed by 18
unoccupied sites, and for Ny = 3 the ground state is the configuration 1,041,043 (the
subscript denotes the number of consecutive sites occupied (unoccupied) by f electrons).
These results indicate that, for I/ < 1 and sufficiently small (large) f-electron densities, the
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ground-state configurations could be mixtures of two configurations, one of which is the
empty (fully occupied) configuration. Figure 3 shows that the ground states corresponding
to the most homogeneous configurations are insulating since for all these configurations
the energy gap A at the Fermu level Er [3] has a finite width. Thus the only possible
candidates for the insulator-metal transitions are the small regions near ny = @ and 1y = 1,
where the ground states are mixtures of the empty (fully occupied) configuration and some
configuration w. If this separation persists on much larger lattices, we can indeed expect
metallic behaviour in these regions since the Fermi level of such mixtures is located in the
band of the empty configuration, and therefore an extra electron can be added at no energy
cost. Our numerical results presented in the following fully accord with this physical
expectation. Before discussing these results let ws show how this picture changes with
increasing g.
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Figure 3. The ny-dependence of the energy gap A calculated for the most homogeneous
configurations at six different values of U/ and for ¢ = 0.1, L = 240,

Figure 2 presents the situation for g = 0.3. We can see that the largest region of stability
still corresponds to the most homogencous configurations; however, in addition to this
region and two small regions near sy == 0 and n; == 1 there appears now a new large region
(U 2 U, =2.783, ny < 0.5) where the configurations of the type {1010... 1000... 0} (they
can be considered as mixtures of the empty configuration and the alternating configuration
w,(Ns) = {1010...}, with Ny = 1,2,....L/2) are the ground states. Thus a further
candidate for the insulator—metal transition is the region U 2 U, ny £ 0.5 and particularly
its boundaries. However, illustrating the U-dependence of the energy gap calculated for
different f-electron concentrations n; and L = 24 (see figure 4, left panel), the energy gaps
for all of the ny have finite values below as well as above U, and thus there is probably
no insulator—metal transition at U,. To verify this guess we have considered a much larger
lattice of 240 sites. For U = U, we have calculated the energy gaps of all mixtures
(alternating configuration + empty configuration) which are the ground states above U, and
all homogeneous configurations which are the ground states below U, [6]. It is seen from
figure 5 that going with ny from 0 to 1 there is no insulator—metal transition at ny = 0.5;
nor is there an insulator—metal transition at U, for any ns. Although in both cases there
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exist finite kinks, the energy gap is always nonzero and thus the insulator—metal transition is
absent at U = U, and ny = 0.5. Thus only the small regions near ny = 0 and ny = 1 remain
candidates for the insulator—metal transition, Indeed, already results on the small lattices
(see figure 4, right-hand panel) indicate that this conjecture would hold true. Therefore, we
now turn our attention fully to these regions.
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Figure 4. The U/-dependence of the energy gap for g = 0.3 and L =24,
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Figure 5. The ny-dependence of the energy gap celculated for the most homogeneous
configurations {solid ling) and the mixtures of the alternating configurations w, (N} with the
empty configuration (dashed line). L = 240, U =2.783, 4 = 0.3. .

The exact numerical results obtained for I/ == 0.6 and a complete set of configurations
on small finite attices are summarized in tables 1 and 2. We have found that independently
of L there exist critical values of the f-electron occupation number N,, and N, such that
for Ny, € Ny < N, the ground states are the most homogeneous configurations, while for
Ny € N, (N, <'Nj < L) the ground states are mixtures of the empty (fully occupied)
configuration and some configuration w (see tables 1 and 2). It is seen that the values of N,
and N,, decrease with increasing g and the region of possible insulator-metal transitions is
reduced consequently. For g > 0.6 this region practically disappears. The long-range
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Table 1. The critical values of the f-electron occupation number N, and the greund-state
configurations (g.s.c.) befow N, calculated for I = 0.6 and different values of L. Here the
subscript denotes the number of consecitive sites occupied (unoccupied) by f electrons in a

£.5.C.
L N, g=01 N, g=02
16 2 104
8 3 12016, 120510 2 12014
20 3 la0yg, 120411042 2 1204
22 3 120, 1204 140g5 3 1200, 20411015
24 3 L0n. 120511015 3 130, L0 i0yy
26 4 12034, 120513019 3 1202, 120511055
120512010
28 4 Ialzs, 1205102 4 1202, 12051102
120312021 1104120411 0ye
30 5 13024, 1206102 4 1202, 120514022
120312023, 1203120411015 120312023
32 5 1203p, 120411023 4 1203y, 150513094
1204 12024, 1203120411020 120315025
34 5 12032, 1aGg1y0s5 5 1203, 120511034
I204 13025, 120512041022 120312027, 1104120411041,0;7
36 5 la03. l2071102s 5 12034, 120411047
120412023, 120312041024 120312029, 120312041024
48 8 12046, 11002037 T 12045, 11061203
[205 12039, 1204120511033 120412040, 1204120511034
1204120413034, 1203120312041503 1203120312036, 12031203110511051,024
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Figure 6. The ns-dependence of the energy gap calculated for ¢ = 0.1 and g = 0.2, Circles
correspond to L = 48 and triangles to L = 480.

hopping stabilizes the insulating state. Note that our exact analytical calculations [7]
performed in the limit ¢ — 1 fully confirm this result.

The ng-dependence of the energy gap calculated for the largest finite lattice (L = 48)
which we have been able to solve for numerically is plotted in figure 6. Although the
results are still affected by an error due to the finite-size effects they apparently show that
below N, (above N.,) the gap is suppressed and vanishes probably discontinuously. To
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Table 2. The critical values of the felectron occupation number N, and the ground-state
configurations above N, caleulated for U = 0.6 and different values of L. For L == 48 the
results have been computed only for ¢ = 0.1 and g = 0.2.

L N g=0.1 Ne ¢g=02 Ne ¢g=03

16 14 0214

18 15 03146 15 02146 16 0al
02140111y 021401113

20 17T 02l 17 0313 17 015
02150132 02150112 02150, 112

22 19 0Oalag 19 0zl 19 Qalag
02150, 114 021501114 021501114

24 21 02122 21 Ozl 21 02122
021601135 Oz160 1135 02160 Lgs

26 22 (Oalys 23 Ozlpy 23 0a1a
02140117 03123 O3la;
021402113

28 23 Ozlg6 24 0zl0g 25 Qalag
O3las O3 las 0O3la5
03140212 021402 139
0114021302114

30 25 Oyl 25 Oqlog % Opln
O3l27 Os1m 03127
03140212 0215021z 02150217
0213021401 15 021403140 117

32 27 0al3g 27 0213p 27 Oz 15y
03129 03129 03129
021502123 021502123 021502 123
0214031401 13y 021402140; Lyg 0214021501 113

34 29 QOils 29 02132 29 Oz13
O3z LT 0313
021502125 021502125 02160212
031402150129 0214021501 12 021402150 L2y

36 30 Ojlag 31 02l 31 Oal3s
Oalaz Ozk33 Ozl
021502127 021502124 021602125
021402150 122 0214021501 l22 0215021501 12
0014021302140, 110

48 41 0s Llag 41 02 bag
03145 0slas
02170, 157 028302154
‘0117021602 130 02150313z
021502150152 0215021502 132

021409 1402150 12z

0214021402 150 L2

confirm this conjecture and to exclude the finite-size effects we have computed the energy
gaps of selected configurations on a much larger lattice of 480 sites. For our numerical
results obtained on small lattices we have chosen the following set of configurations:
(i) for N, € Ny £ N, the most homogeneous configurations; (ii) below Ny < N
(above Ny > N,,) the mixtores of the empty (fully occupied) configuration with [120s],
[1204] ([021). [0,15]) configurations [8] for g = 0.1 and [1504], [1205] ([O21s], [O21sD)
configurations for ¢ = 0.2, which are the ground states on larger lattices for ny = —115 %
(ny = I—ﬁ, 1- é) (see tables 1 and 2). The energy gaps calculated for these configurations
correlate very well with the exact numerical results obtained for L = 48 and thus we expect
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that the real picture of the insulator—metal transition would be very close to this one. For

N, < Ny < N_, the gap has a finite width, while below N, (above N.,) the gap vanishes—
the insulator—metal transition takes place at N (N.,).

1.0

0.8
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Ng N
0.4 -
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Figure 7. The dependence of the f-electron occupation density ny on the f-level position Ef
for L =48, g = 0.1 {solid line) and ¢ = 0.2 {dashed line).

-

As we have discussed in our previous paper [1] (see also figure 7) the change of ny
can be induced by the shift of the f-level position Er. However, this shift, on the other
hand, can be driven by external pressure p, so we have the discontinuous insulator-metal
transition in the spinless Falicov—Kimball model at E; = E. (p = p.). Such behaviour
of the energy gap with the external pressure was really observed recently by Colley et al
[9] for SmBg. Performing a more exhaustive resistivity study also supplemented by Hall
effect measurements, they found that the energy gap does not vanish continuously as the
previous resistivity studies indicated [10] but vanishes discontinuously at ~50 kbar. Thus,
taking into atcount our present as well as previous results [1, 11] we can conclude that
the Falicov—-Ximball model is indeed a convenient model for description of the valence
and insulator-metal transitions in rare-carth compounds, since it apparently supports both
discontinuous intermediate—valence transitions as a function of E; [1], and discontinuous
metal-insulator transitions as a function of rg. Since, in practice ny is a function of Ef,
the comprehensive picture of valence and metal-insulator transitions in the framework of
the Falicov—Kimball mode] with 2 generalized type of hopping is as follows. In the strong-
coupling limit the model undergoes a few discontinuous intermediate-valence transitions
[1]. These transitions are insulator—insulator transitions, since they are realized between
the insulating ground states corresponding to the most homogeneous configurations, which
are the ground states in this region (at least for small vaiues of g) [1, 11]. In the
weak-coupling limit the basic structure of the transition is again formed by the most
homogeneous configurations with the smallest periods; however, the transitions between
two such configurations (unlike in the case of large ) are now gradual (see figure 7). In
addition, for sufficiently small U and ny — 0 or 1 the energy gap vanishes discontinuously
atny = ng and ny = n,, (Er = E,,, E,,) and thus discontinuous insulator-metal transitions
take place at these points. The values of n,, and n., decrease with increasing ¢ and the
accessible regions of insulator—metal transitions are consequently reduced. For sufficiently
large values of g (g > 0.6) these regions practically disappear.
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